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How large a sample is needed for the maximum likelihood
estimator to be approximately Gaussian?

Samuel L Braunstein
Department of Physics, Technion-Israel Institute of Technology, 32000 Haifa, Isracl

Received 10 January 1992

Abstract. This paper concerns the failure of the Gaussian approximation to the distri-
bution of the maximum-likelihood estimator in one-parameter families for finite sample
sizes. Fisher has shown that this approximation is valid when an asymptotically large
sample of data points is used. He did this by treating the likelihood equation (i.e. the
equation oblained by setting the derivative of the likelihood function with respect to the
parameter o zero) statistically and finding its solution as the sample size n is taken io
infinity. In this paper the statistical treatment of the likelihood equation is extended to
include corrections for finite sample sizes. The O(1/n) corrections to Fisher’s asympiotic
Gaussian result are calculated with corrections to the central limit theorem, and are used
to derive sufficient conditions on the sample size for Fisher's result to break down. Such
conditions are useful for the design of experiments. The procedure developed here can
be extended to the maximum-likelihood estimation of several parameters in multivariate
distributions.

L. Introduction

The maximum-likelihood estimator is a widely used method of parameter estimation.
The asymptotic behaviour of this estimator is known; however, it is not generally
known when this asymptotic regime is reached. There are many applications where
a set of 100 data points is considered a ‘large’ sample, and yet figure 1 shows that,
at least for some distributions, 100 data points are not nearly enough. In this paper
two sufficient conditions on the number of data points are derived which ensure the
failure of this asymptotic behaviour. This is done by deriving an expansion 0 O{1/n)
for the probability P(A®) of the error AP of this estimator for the parameter ®.
The QO(1/n) terms correct for the finite size n of the sample.

For an asymptatically large number of sample points, the variance of the distri-
bution of Ad was shown by Fisher [4,7] to go as var(A®) ~ 1/(nI), and this
behaviour 5 associated with the distribution P{A®) approaching a Gaussian. (Here
Z is called the ‘Fisher information’, or sometimes the ‘expected Fisher informa-
tion’.) A Gaussian likelihood function leads to great simplifications in data analysis;
straightforward techniques can be used to find the maximum [8] and hence estimate
the parameter. Also, calculation of the confidence intervals may be performed using
the local curvature of the likelihood function at the maximum {2]. For these reasons
it is important to know when the Gaussian approximation is invalid.

Further, knowing when the asymptotic regime begins means that one also knows
the efficiency of maximum-likelihood estimation from that point on. Thus, the re-
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Figure 1, This figure shows the half-width 99% confidence interval for estimating the
location of the peak of a distribution versus sample size. Even for 100 data points the
Gaussian approximalion given by the broken curve is shockingly bad. (The sampled
distribution shown in the inset is taken from expression (3.5) with M = 74, and the
error bars represent a 95% confidence.

sults presented here also play an important role in the design of experiments having
‘optimal’ efficiency {1, 9].

For an unbiased maximum-likelihood estimation of a single parameter ¢ from
n data points {¢,:7=1,...,n} taken independently from a distribution of the
form p(¢ | ®) = f(¢ ~ ®) (i.e. the translation family of single-parameter univariate
distributions), two sufficient conditions are derived below for the failure of Fisher's
asymptotic result. The first condition is that if

2 p 1 pt 100%
number of data points = n g [12 quS(T 3) " 2 —

then the O(1/n?) correction to the variance var(A®) differs from Fisher’s asymp-
totic result of 1/(nZ} by more than e%. Here p = p(¢ | ®) and primes on p denote
differentiation with respect to ¢. Moreover, since Fisher’s result corresponds to the
Cramér-Rao lower bound it is an underestimate of var(A®). The second condition

is that if
,pH" 1‘4 B 100%)
nelg fae( - ) 9| (7

then the lowest-order corrections to the kurtosis of P(A®) will be more than f%
of the square of its variance. For a Gaussian distribution the kurtosis would be
identically zero.

It is shown in section 2 how the asymptotic expansion of Fisher can be extended
s0 as to include corrections due to the breakdown of the central limit theorem. This
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is used in section 3 to obtain the above sufficient conditions for the case of the
translation family of distributions. Then in section 4 the validity of these conditions
is demonstrated for two particular distributions by comparison with the independent
method of Monte Carlo simulations, The appendix gives a summary of the results
needed in section 2 for asymptotic corrections to the central limit theorem.

2. Statistical treatment of the likelihood equation

For n independent selections of data {¢; : : = 1,...,n}, the log-likelihood func-
tion £(®) = 5 log p(¢; | D), gives the logarithm of the likelihood (up to an additive

ranctantt AfF thie camnle having hasn colansrad from the dictrihutinn »f A 1 6 with
COolslauy Ul Uil safipiv Daviliy Uil SUieill WUl Uit GBUICUBUUn ph@ | ) S

parameter &. The value of & for which £(®) is an absolutc maximum corresponds
to the best estimate for the parameter based on the maximum-likelihood estimation.
Unconstrained maxima may be found using elementary calculus by solving the ‘likeli-
hood equation’ £'(®) = 0, where primes on ¢($) denote differentiation with respect
to &,

Fisher treated this equation statistically for awmnmucal!y large sample sizes to
solve for the dnstnbunon P(A®) of the error AQ in the parameter estimate, ie.
A® = & — O, with ¢, the actual parameter used in obtaining the sample. He
was able to show that for asymptotically large sample sizes there was only one real
solution (with any probability) to the likelihood equation.

In this section the statistical solution of the likelihood equation will be extended
to obtain Q(1/n) corrections to P(A®). For finite samples the likelihood equation
does not asymptote to a trivial equation with a single real root. Because of this there
are two difficulties that arise with the use of the likelihcod equation to obtain the
maximum likelihood. All local maxima and minima of the likelihood function will be
roots to the likelihood equation, but only cne of them can be the absolute maximum.
(This difficulty also exists in the method of uniformly accurate approximations to
distributions [5), but it is not recognized there) Further, any constraint on the
parameter values may invalidate the use of the unconstrained likelihood equation.
Restricting the parameter to be real does not invalidate the likelihood equation.

In what follows, these two difficulties will be neglected, since the aim here is to
determine sufficient conditions for when Fisher’s asymptotic results cannot be trusted
without an independent check (such as numerical simulatior). For this purpose, it
suffices to know when the O(1/n) corrections calculated here are non-negligible.
It is important to note, as illustrated in section 4, that the results here cannot be
expected to be used to calculate the behaviour of P(A®) for arbitrary sample sizes.

Fisher studied the Taylor expansion of the likelihood equation about the actual
parameter value ®:

—_ N AJ\ H .v L (Aq))z Hl/ A
=8P tTa Po) T — (o) T

'~

[
[Y—
N

For asymptotically large n, application of the central limit theorem to expression (2.1)
shows that all but the first two terms may be ignored. To keep the O(1/n) corrections
to the solutions to this equation, corrections to this order in the central limit theorem
must be included. The appendix gives the corrections to the central limit theorem
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that are needed here. To apply these corrections it is useful to define the multivariate
variables

!

z,(¢) = Tor logp(fbl‘bo)
1 n

V.= = N Twmfa ) o

AP = = 2 ATNG; T
1=1

where the means y; are given by p; = [d¢ p(¢| ®,)a;(¢). Condition (2.1) now
simplifies to

n.

X +vVny;)

M

where A, = (A®)™/m!. (The convention that repeated subscripts are summed
over is followed throughout this paper.) The quantities c;;, ¢;;j, and c;;,; are defined
by expression (A2) as the expectations of powers of [x;(¢) — u,;] with respect to the

nrnhnhdxhr dncfnhnhnn mi AL MY A
t’ UL LAV LIV y\w i ‘fﬂ}’ l Ny

c;; = E{[z;(¢) - #.‘][“f‘j(‘f)) — w1}
cijr = E{lz;(¢) — wllz;(@) — p;]lz (@) — 1]}
¢iju = E{lzi(@) — willz; (&) - ;]2 (@) — i )le &) — ]} — Beyj e

The probability distribution P(A®) of the deviation AP of the estimate from
the true parameter value @, is given by ~

P(a®) o [ TL4X,POX,)8(A4(X, + Vi)

where §{x) is the Dirac delta function which may be thought of as a shorthand for
any Jacobian factors needed, and the distribution P(X,) of the variable X is given
asymptotically by the Fourier transform of expression (Al). (Note the proportionality
sign which is a reminder of the nced to normalize the resulting distribution.) The
goal of this section is to obtain an asymptotic expansion for this probability for a
large number n of sample points. An asymptotic expansion of this expression as it
stands would be very difficult, if for no other reason than the difficulty of obtaining
(e71);;, so first P(A®) is rewritten using the Fourier integral theorem. This gives

P(AD) x /% ( X; dI )EX])(II\ X, (K, ) explikA, (X; + Vnup)
dk . . . .
- fz_;Hd]\‘exp(lkﬁA[#I)é(kAJ+11J)X,n(]\m)

dk )
= f—é—;exp (ikvnA )X, (—KkA;)
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By using (Al), the asymptotic expansion up to O(1/n)} of P(AP) is

dk ) k2 P A A Apcijy
P(AD) x jﬁexp(lk\/ﬁAquq)exp (- E—AmAncmn) [1 - ———--6—7_5———-—-

+ 3k4Al'AjAkAlc1'jH - kG(A,‘AjAkcijk)z 1
+0| 55
T2n n3/2

It is still necessary to expand the exponentials in powers of 1/4/n. It is useful to
define a change of variables by B = (A;A;¢;;)"Y/%, and y = R BA;u;, which
yields

PIA®) o B v\ T - Hy(y)B>A;A; Aycygy
La®) e« Gmmz ¢ \ 7 )| D
+ B3I, (y)B'A;A; AL Ajeyi + Ho(y) BS(A;A; Agejp)?
2n
+0(— (22
O n.s/z -2)
where the Hermite polynomials f1 (y) are given by
dK gex -krppgen 1 d" 1 -x%2) _ n 1 -X3/2
/—é-;e e K" = I (27‘_)1/213 =i H"(X)(Q-;r)llie .

A agroat cimnlificarinn mMmn nnw he made hy nnnna that rhp synactatinn nf a
£ gICal SLOpdnCaion (G Lusy maul Oy LUl wia LAapLLianln “

derivative of the likelihood function is zero; this implies that g, = 0. Using this
result, the asymptotic form of P(A®} can be obtained as an expansion in powers of
1/+/7 about Fisher’s Gaussian result, which has the form

Py(AD) = (E’;—’ii) Uzexp (:’EEE—(-‘?—‘I’)—) 2.3)

11 2¢4

The expectations of (/nAd)™ will be of O(1), as can be verified by integrating
them over the F, in (2.3). Thus, for the purposes of expanding about Fisher’s result,
A® will be of O(1/+/7). Taking this into account allows an expansion of the various
terms making up (2.2)

1 csAD | (AD)? 1
B = m[l - 1211 + 2, (3¢ia ~ €qyey3 = €1162) + O (HTN')] 24
and
—y? —np2(A0)? np,(AD)?
exp (__23;__) = exp (—'—I;Z—(—)—) [1 + "ﬁz,;(—'—')—(zﬂzcm H311)
=Cy1 c11
71(‘{}.(}))4

2.2 2
Nic (48p5¢7y — 2dpgpgcy €19 ~ 12435¢)1Cp3
24e

— 123¢) ¢n + ditahciy T 3pier))

2u2(AD)° 1
f_".l_ﬂ(___)_(fz,uzcw #3611) +O( 3/2)] 2.5)

4
8cty

+
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The final terms of (2.2) come from the explicit corrections to the Gaussian form
of the central limit theorem. Again, since A® 8 O{1//n), some of the terms in
(2.2) of O(A®?) with factors of \/n in the denominator, are actually negfigible to
O(1/n). Keeping only terms that are genuinely O(1/n) gives

_Hy()BPA A Arey ey
6/n T 6(ney )2
1
x Ha{ (““3) /2A®[1 + 9_‘3(&; - 2012)]}
11 2 o €11
3e c 1
AD 112 _ 12

* [1 * ( Ci11 ‘311)] +O (“3/2) @6)

and

3H4(U)B4A£AjAkAlcijkl + Hs(y)BG(AiAjAkcijk)z

T2n

= —{3H,j| = Adle
T2ncl, AN 111

2y +/2 )
LS cin 1
+ HG[( 11 ) A(I)] €11 } +0 (n3/2) @7

where the arguments of the Hermite polynomials are shown explicitly.

So, equation (2.2), with (2.4) and (2.5) substituted into the prefactors and (2.6)
and (2.7) in the square brackets, give the asymptotic expansion of P(A®), that is, the
asymptotic solution to the likelihood equation including first corrections for a finite
sample. The O(1/n) corrections to P(A®) correspond to keeping terms up to cubic
order in A® in the expansion (2.1). The statistical approach used here includes both
the correlations between terms in the expansion of the likelihood equation, and the
corrections to the central limit theorem.

3. Translation families

In this section explicit conditions for the failure of the Gaussian likelihood approxima-
tion are obtained for the case of estimation of parameters of the so-called translation
family. That is, the probability density takes the form p(¢ | @) = f(¢—@). It'is
further assumed that this density satisfi¢s the ‘sensible’ boundary conditions

d
[aoggalate i) =0

for any sufficiently ‘sensible’ function g(p',p",p"’,p"”) which includes only up to
the fourth derivatives of p(¢ | ) (recall that primes on p denote differentiation with
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respect t0 ¢). In this case the expectations of the derivatives of the log-likelihood
function can be simplified by integration by parts:

f2
Elzy(@)) = py = ./d(ﬁ-; =-7

- _ ___l pf.'i
Elze d’)] = Mg = Z J[ dﬁb-pj

pn2 ) p.v4
E[$4(¢)I =S Uy = /d¢(“l;“ = gg)

{recall that 7 is the Fisher information). The higher-order moments can also be
simplified:

Elzy(6)*] = ¢y = /d‘f’g‘};‘ =
Ele(Dan@)] = o = 5 [ d057 =~

P

Ejz,(¢)x3(d)] = ¢35 _j dd)(——_ _ p”‘) -,

»
2 _ 2 puz 1 pm
Elzy(¢) ] =+ I = fdﬁb(—‘g— 3,8 3.1
p.'S
Elz(¢)®) = ¢y, = ‘”J[d¢? = 24,
o .'4
Elz,(¢) z4(¢)] = crin -I*= "‘]dqb— = Hq— Cyp -1?

E[z,(¢)"] = ¢4, + 3% = /d¢%§ = 3(cyy + I = piy) -

Substituting these simplified expressions for translation families into (2.2) to (2.7)
gives corrections 1o P{A®), For a completely general distribution of the translation
family the expression is lengthy and therefore not written here. Only the expectations
of the error and the square error are given here as

\1

1

i r /
E(A®) = *2;;2 l1 13(453”3 + 864,7 — 159¢,,7) + O (

and

E[(a®)?] = 1—3—-[1 + o7 IJ(SCQQI 5n3)+0( ;/2)]

Recall that (2.2) has a proportionality sign so that for calculating the above moments,
a normalization constant is needed. This normalization for P(A®} is given by

1 i
[dACI)P(AfI))oc ——‘/ﬁ-[ 2 13( 2¢927 — gl = 31”3)"'0( a;‘z)]
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The moments ¢y, ¢;;, and cyyyy which arise from corrections to the central limit
theorem do not appear explicitly in the above expressions because for the translation
family equations (3.1) give them in terms of e,,, pg and u,. Nevertheless, the
central limit theorem corrections have implicitly affected the O(1/n) results, and
were therefore an essential part of the expansion procedure. Different Q(1/n)
corrections would have been erroneously obtained if the corrections to the central
limit theorem were not included in the solution of the likelihood equation.

A case of special interest is when the maximum likelihood estimator is unbiased,
that is, when p4 = 0. In this case E{A®) =0,

var(A®) = — {1-1- [1 qub(p—;—%%;)qho(n—;i)} 3.2)

and by making the change of variable to Y = (nZ)!/2A @, the normalized probability
distribution becomes

P(Y) = (27) % exp(~ Y/2)[1+8 12(Y4+2Y2 5)
+ 1 u4 (Y4 - 62 +3)+o( ;/q)]. (3.3)

It is easy to turn this result into a condition for the failure of Fisher’s asymptotic
result, If

100%
r e%

where n,,, is given by

2‘ pHQ lpﬂl
My = [qu'ihﬁ( i -2

then the O(1/n?) corrections to the variance var(A®) differ from Fisher’s asymp-
totic result of 1/(nZ) by more than e%.

The second condition derived for the failure of Fisher’s asymptotic result for the
unbjased maximum likelihood estimator requires that the kurtosis

k = var( AD)? [—C”—+-’i4-+o ( - )]

1’2

of P(A®) be non-negligible. (Recall that x = 0 for a Gaussian distribution.) In
particular, if

100%
n g nkurw

1 4pn2 5pr4
7 fae( -3 ) -

where

Mgy =
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then the first corrections to the kurtosis of P(A®) will be more than f% of the
square of its variance.

A nice feature of these conditions is that they did not require any assumptions
beyond an unbiased translation family distribution. The use of these conditions will
now be illustrated for two classes of distributions in the unbiased translation family.

These two classes were chosen with very different characteristics. The first is
a power of a Gaussian distribution, which has a flat peak, is box-like, and has an
insignificant tail. Their probability densities arc given by

PR B0) = fgygy oxp [ (6= 20)™"] (3.4

with m a positive integer. For m = 1 this reduces to a Gaussian. As m increases
the distribution becomes more box-like.

In contrast, the second class of distributions have thin peaks, and broad tails.
Their probability densities are given by

MAL o\ 1MoL 2 ‘
(2)(¢, ! o )_ 1 ( Z 3_12_) kz exP[lk(;f ‘DO)] (3'5)
i=1 =1

over the interval ¢ € [—r, ), with M a positive integer. For M = 1, this reduces
to a uniform distribution which is of no interest for maximum likelihood estimation.
However, as M increases the distribution develops a sharp peak (approximated by a
logarithmic divergence) and keeps its wide tail.

Tables 1 and 2 show the type of predictions that can be easily generated for many
distributions, and that could prove useful in the design of experiments. These tables
show, for various members of the classes (3.4) and (3.5), the number of data points

. and n, . which [to O(1/n) in P(Ad)] correspond, respectively, to a 100%
deviation from Fisher’s variance, and to a kurtosis which is 100% of the square of
the variance of the estimate.

Table 1. Example of the type of table (hat can be generated from the results in this paper
to be used in the design of experiments. For the class of distributions (3.4), 5nvar and
Sny,, estimale the number of data points at which the Gaussian approximation breaks

+ down (coresponding 1o an error of 20% for ¢% and f% respectively). The distribution
is Gaussian for m = 1; increasing m makes it more ‘boxy’.

m Tvar Tgur
1 0.0 0.0
2 2377 2.106
3 5.743 5517
4 9.378 9.191
5 13.14 12.98
10 32.61 32.52

As a trivial example, in table 1, m = 1 corresponds to a Gaussian distribution.
For any non-zero choices of the confidence parameters e and f, both of the above
conditions require that n g 0, but this is in exact agreement with an analytic calcu-
lation of the maximum likelihood behaviour, since this distribution has a Gaussian
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Table 2 Example of the type of table that can be generated from the results in this
paper to be used in the design of experiments. For the class of distributions (3.5), Sttyar
and Sny,, estimate the number of data points at which the Gaussian approximation
breaks down (corresponding 1o an error of 20% for ¢% and f% respeciively). The
distribution has a long tail and a peak that logaritlhmically diverges as M increases.

M Tyar Mhur

PRV noca

2 4.314 5.854

4 6.065 12.36
12 11.79 23.68
33 26.19 52.15
50 3741 74,36
74 5292 105.1

tikelihood function for aif sample sizes, with a variance identical to that predicted by
Fisher’s asymptotic results,

As a less trivial example, consider pgl) which is tabulated as mn = 4 in table 1.
Both n, and n,,, are only a little larger than nine data points. Thus, if one wanted
to perform an experiment which would be analysed assuming an approximately Gaus-
sian likelihood function with the conlidence parameters €% and f% approximately
5%, then one would need to sample around 180 to 190 data points. Further, it would
be inappropriate to analyse smaller samples than this using techniques which assumed
an approximately Gaussian likelihood function.

As a final example, table 2 predicts that n,, ~ 100 for the distribution corre-
sponding to the onc shown in figure 1. Choosing the kurtosis confidence parameter
f% as 10% leads to the prediction that one should not assume that the likelihood
function is sufficiently close to being Gaussian when the sample size is less than, say,
1000 data points!

4. Numerical simulations
The resuiis of seciion 3 are quiie convenient for the design of experiments because
they are simple and applicable to many distributions. Nevertheless, the user might
want some evidence of their validity. For this purpose, some comparison with numer-
ical simulation is presented in this section.

Expression (3.3) gives the O(1/n) correction to Fishers asymptotic Gaussian
result sincc these distributions are members of the unbiased translation family., For

tha artual ctatictire fnr P/ /\ (T'l\ were calenlatred uc‘nﬂ Manta (‘qun =1m1|-
wnlyﬂl l..)uu, tne actua: statistics 1ot Y J wlit Laiuiaicu Lig, LUV

lation. This involves making repeated simulations of an ‘experiment’ in order to build
up the distribution of the estimator. Each ‘experiment’ consists of selecting »n points
independently from a distribution, calculating the likelihood function, and finding the
location of the absolute maximum. Since the translation family distributions depend

only on the difference between the random variable ¢ and the actual parameter @,
then for the nurnoses of cimulation the actual narameter value may be chosen as

zero, ie. @, = 0. The details of the computer algorithm and errors analysis are
discussed in some detail elsewhere {6].

Tables 3 and 4 compare the results of section 3 with numerical simulations for
the choices m = 4, and A == 12 in the distributions (3.4) and (3.5) respectively.
These tables show the predicted deviation (based on (3.3) for P(A®)) from Fisher's
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asymptotic prediction of 1/(nZ) next to the actual percentage deviation as calculated
by Monte Carlo simulation. For both cases n,,. ~ 10 data points. For samples
consisting of only 10 data points the predicted and actual deviations qualitatively
agree, in that they both say there are large deviations from Fisher’s results. However,
they do not agree quantitatively. The quantitative agreement becomes better as
successively larger sample sizes are studied. For these two cases, the tabulated results
show that when the number of data points is large enough that e% ~ 20%, then
there is even good quantitative agreement between the predicted and actual per cent
deviations from Fisher’'s result. Thus, the conditions of the previous section are
validated.

Table 3. The predicted percentage deviation of the variance in the estimate compared to
the actuat percentage deviation from Fisher's result for distribution (3.4) when m = 4.
(The unceriainties represent one standard emrer for the variance.)

Number of  Predicted percentage Actual percenlage
data points deviation from Fisher’s result deviation from Fisher’s result

10 93.8% 59.5% +2.1%
20 46.9% R2.3% + 1.6%
30 31.3% 2.5% + 3.0%
40 23.4% 15.8% + 4.0%
60 15.6% 20.2% + 10.1%

Table 4. The predicted percentage deviation of the variance in the estimate compared to
the actual perceniage devialion from Fisher's result for distribution (3.5) when M = 12,
(The uncertainties represent one standard error for the variance.)

Number of  Predicted percentage Actual percentage

data points  deviation from Fisher's result  deviation from Fisher’s result
10 117.9% 644.2% + 389%

20 59.0% 132.7% + 18.7%

30 39.3% 57.5% + 4.6%

40 29.5% 30.5% £+ 2.5%

60 19.7% 17.2% £+ 23%

Why is there only poor quantitative agreement between the predicted and actual
deviations for a smaller number of data points? It is because the predicted deviations
are based only on the f(irst corrections to the solution to the likelihood equation.
Thus, the corrections to P(AQ) should nor be used as a better approximation to
the behaviour of the distribution of the estimate. The problem with doing this
is illustrated in figures 2 and figure 3. In figure 2 the O(1/n?) correction for
the estimate variance is shown by the dotted curve, and it overestimates the actual
values (except for samples with 60 data points), whereas in figure 3 this correction
underestimates the actual values (except for samples with a single data point or with
60 data points). These corrections do not predict well the small sample-size behaviour.
In both cases, however, the Fisher prediction given by the broken curves is aiways
an underestimate of the estimate variance, a consequence of the Cramér-Rao lower
bound.
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Figure 2. The variance var(A®) of the estimate A®, for distribution (3.4) (shown in
the inset) with m = 4, as computed by Monte Carlo simulations, as a function of n,
the number of data points (full curve). For comparison, the broken curve represents
the asympiotic Fisher result of 1/{nT7), and the dotted curve represents the corrected
variance given by expression (3.2). Fisher's result is an underestimate of the estimate
variance, and the predicted correction [rom this paper gives an overestimate (except for
samples with 60 data points).

0.005

0.002

Figure 3. The variance var{A¢} of the estimate A ¢, for distribution (3.5) (shown in
the inset) with M = I2, as computed by Monte Carlo simulations as a function of n,
the number of data points (full curve). For comparison, the broken curve represents
the asymptotic Fisher result of 1/(nT), and the dotted curve represents the corrected
variance given by (3.2). Fisher's resull is an underestimate of the estimate variance, and
the predicted correction from this paper also gives an underestimate (except for samples
with a single dala point or with 60 data paints).
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5. Concluding remarks

The main result of this paper is a technique for obtaining explicit conditions for
the failure of the Gaussian approximation to the likelihood function. While in this
paper such conditions were actually only derived for the unbiased maximum likelihood
estimation of single-parameter distributions in the translation family, enough details
have been given in the derivation, so that conditions for more general classes of
distributions, including multiparameter and multivariate distributions, may be derived.

These results are useful for the design of experiments if one is interested in
applying simple methods of data analysis in maximum-likelihood estimation. These
simpliﬁed methods are widely used, but their validity is seldom checked. The proce-

dure given here can help assure that the error bar for a parameter estimate is not
significantly underestimaied.

Finally, the results presented here give the efficiency of maximum-likelihood esti-
mation inside the asymptotic regime and also when this regime is reached. There has
been a growing interest in the physics community in the design of ‘optimally’ efficient
experiments. As these designs usually assume maximum-likelihood estimation is to
be used as the method of data analysis, there is a role for the results of this paper in
this endeavor.
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Appendix. Central limit theorem corrections

This appendix describes corrections to the multivariate central limit theorem for
mdenendentlu selected identical Q'lmnl(-q I’H It will be suflicient to mve the corrections

in terms of the characteristic functnon Consuder the multivariate dlStl'lbUthﬂ p(x;)-
The goal is to obtain an approximation, for large n, of the distribution of the variable

1 n
= ﬁ;[(xi)j —H

with u; the mean of z; over p(z;), and (z;), the ith component of the jth piece of
data. The characteristic function x, (/) for this distribution is then given by

o0 = T, o160 P = 0 (s [ ()]

1[\ K, I‘kcljk

= exp(—l\}nl ](n cn:n/g) [1 . _—G\/;?,—_—_——

SK N, K Kyegj = (K, K, K ¢;)* 1
I e e LT [kl Bl e X1
+ 2n +0 (n3/2)]

(A1)
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where x;(k;) is the characteristic function for p(z;), and defining Az; = z; — p,
the multivariate moments are given by

¢;; = E(Az;Az;)
ijk = E(AIC‘A-'EJAIJ:) . (AZ)
C:'_,‘-'rl:.’ = E(Aﬂ.?:ASCjASL'kA:L'!) - Bc:'jck! .
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