
How large a sample is needed for the maximum likelihood estimator to be approximately

Gaussian?

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 3813

(http://iopscience.iop.org/0305-4470/25/13/027)

Download details:

IP Address: 171.66.16.58

The article was downloaded on 01/06/2010 at 16:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys A: Math. Gen. 25 (1992) 3813-3826. Printed in the UK 
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estimator to be approximately Gaussian? 
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Depanment of Physics, Echnion-Israel Institute of Technology, 32WO Haifa, Israel 

Received 10 January 1992 

AbSlracL l h i s  paper concerns the failure of the Gaussian approximation lo the dish- 
bution of the maximum-likelihood estimator in one-parameter families for finite sample 
sues. Fisher has shown Uiat this approximation is valid when an asymptotically large 
sample of data p in ts  is used. He did this L y  weating the likelihood equation (i.e. the 
equation obwined by setting the derivative of !he likelihood function with respect to the 
parameter lo zero) statistically and finding its solution as the sample size n is taken lo 
infinity. In this paper the statistical Vealment of the likelihood equation is extended U1 
include corrections forfiiire sample sizes. Ihe O(l /n )  mrrections to Fisher’s asymptotic 
Gaussian result are calculated wirh corrections to the central limit theorem, and are used 
to derive mficieni conditions on the ample Size for Fisher’s result to break down. Such 
conditions are useful for the design of aperimenu. The procedure developed here can 
be extended to tl ir maximum-likelihood estimation of several parameters in multivariate 
distribulions. 

1. Introduction 

The maximum-likelihood estimator is a widely used method of parameter estimation. 
The asymptotic bchaviour of this estimator is known; however, it is not generally 
known when this asymptotic regime is reachcd. There are many applications where 
a set of 100 data points is considered a ‘large’ sample, and yet figure 1 shows that, 
at least for some distributions, 100 data points are not nearly enough. In this paper 
two sufficient conditions on the number of data points are derived which ensure the 
failure of this asymptotic behaviour. This is done by deriving an expansion to O ( l / n )  
for the probability P ( A Q )  of the error A@ of this estimator for the parameter a. 
The O ( l / n )  terms correct for the finite size n of the sample. 

For an asymptotically large number of sample points, the variance of the distri- 
bution of A@ was shown by Fisher [4,7] to go as var(AQ) - l / ( n I ) ,  and this 
behaviour is associated with the distribution P(AQ) approaching a Gaussian. (Here 
Z is called the ’Fisher information’, or sometimes the ‘expected Fisher informa- 
tion’.) A Gaussian likelihood function leads to great simplifications in data analysis; 
straightfonvard techniques can be uscd to bnd the maximum [SI and hence estimate 
the parameter. Also, calculation of the confidence intervals may be performed using 
the local curvature of the likelihood function at the maximum [Z]. For these reasons 
it is important to know when the Gaussian approximation is invalid. 

Further, knowing when the asymptotic regime begins means that one also knows 
the efficiency of maximum-likelihood estimation from that point on. Thus, the re- 

0305.4470/92/133813+14$04.50 @ 1992 IOP Publishing Ltd 3813 
I 



3814 S L Brounsrein 

Figure 1. ?his figure shows the half-width 99% confidence interval for atimaling the 
localion of lhe peak of a distribution Y C ~ U S  sample size. Even far 1W &la poinu the 
Gaussian approximalion given by the broken cuwe is shoekingly bad. p e  sampled 
distribution shown in lhe insel is laken from expression (3.5) with M = 14, and the 
m o r  bars represen1 a 95% confidence. 

sults presented here also play an important role in the design of experiments having 
‘optimal’ efficiency [1,9]. 

For an unbiased maximum-likelihood estimation of a single parameter @ from 
n data points {+, : i = 1,. . . , n )  taken independently from a distribution of the 
form p ( +  I (P) = f (+  - @) (i.e. the translation family of single-parameter univariate 
distributions), two sufficient conditions are derived below for the failure of Fisher’s 
asymptotic result The first condition is that if 

number of data points G n < [$ / d 4 (  - !e) - 21 (G) 3 P 3  

then the O( l /nz )  correction to the variance var(A@) differs from Fisher’s asymp- 
totic result of l / (nZ) by more than e%. Here p = p ( 4  I @) and primes on p denote 
differentiation with respcct to 6. Moreover, since Fisher’s result corresponds to the 
Cram&-Rao lower bound it is an underesrimore of var(A@). The second condition 
is that if 

then the lowest-order corrections to the kurtosis of P(A@) will be more than f %  
of the square of its variance. For a Gaussian distribution the kurtosis would be 
identically zero. 

It is shown in section 2 how the asymptotic expansion of Fisher can be extended 
so as to include corrections due to the breakdown of the central limit theorem. This 
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is used in section 3 to obtain the above sufficient conditions for the case of the 
translation family of distributions. Then in section 4 the validity of these conditions 
is demonstrated for two particular distributions by comparison with the independent 
method of Monte Carlo simulations. The appendix gives a summary of the results 
needed in section 2 for asymptotic corrections to the central limit theorem. 

2. Statistical treatment of the likelihood equation 

For n independent selections of data {4< : i = 1 , .  . . , n}, the log-likelihood func- 
tion e ( @ )  Clog ~ ( 4 ~  I a), gives the logarithm of the likelihood (up to an additive 

parameter @. The value of Q for which e ( @ )  is an absolute maximum c"p0nds 
to the best estimate for the parameter based on the maximum-likelihood estimation. 
Unconstrained maxima may be found using elementary calculus by solving the 'likeli- 
hood equation' e'(@) = 0, where primes on t (Q)  denote differentiation with respect 
to @. 

Fisher treated this equation statistica!!y for asymptotica!!y large mmple sizes to 
solve for the distribution P ( A @ )  of the error A Q  in the parameter estimate, i.e. 
A@ = @ - Q0, with Qo the actual parameter used in obtaining the sample. He 
was able to show that for asymptotically large sample sizes there was only one real 
solution (with any probability) to the likelihood equation. 

In this section the statistical solution of the likelihood equation will be extended 
to obtain O( l /n)  corrections to P ( A @ ) .  For finite samples the likelihood quation 
does not asymptote to a trivial equation with a single real root. Because of this there 
are two difficulties that arise with the use of the likelihood equation to obtain the 
maximum likelihood. All local maxima and minima of the likelihood function will be 
roots to the likelihood equation, but only one of them can be the absolute maximum. 
(This difficulty also exists in the method of uniformly accurate approximations to 
distributions IS], but it is not recognized there.) Further, any constraint on the 
parameter values may invalidate the use of the unconstrained likelihood equation. 
Restricting the parameter to be real does not invalidate the likelihood equation. 

In what follows, these two difficulties will be neglected, since the aim here is to 
determine sufficienr conditions for when Fisher's asymptotic results cannot be trusted 
without an independent check (such as numerical simulation). For this purpose, it 
suffices to know when the O( 1/71) corrections calculated here are non-negligible. 
It is important to note, as illustrated in section 4, that the results here cannot be 
expected to be used to calculate the behaviour of P ( A @ )  for arbitrary sample sizes. 

Fisher studied the 7aylor expansion of the likelihood equation about the actual 
parameter value Q 0 :  

GEstant) of Lhis st+?!- h-visg beex se!ectei! from t!e C!is::ihe5o=o p(qb 9) et!! 

(2. i j 

For asymptotically large n, application of the central limit theorem to expression (2.1) 
shows that all but the first two terms may be ignored. lb keep the O( l /n)  corrections 
to the solutions to this equation, corrections to this order in the central limit theorem 
must be included. The appendix gives the corrections to the central limit theorem 
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that are needed here. lb apply these corrections it is useful to define the multivariate 
variables 

where the means pi  are given by pi  
simplifies to 

J d +  p ( +  1 D 0 ) z i ( + ) .  Condition (2.1) now 

where A, 3 (A@)"/m!. (The convention that repeated subscripts are summed 
over is followed throughout this paper.) The quantities cij, c i j k ,  and c i j k j  are defined 
by expression (A2) as the expectations of powers of [ z i ( + )  - p i ]  with respect to the 
p:ahr$Jig &tribn~on p(+  eo), 

ci; = EUZi (+)  - L41bj(+) - P j l l  

Cijb = ~ t [ z i ( + ) - ~ i l [ ~ ; ( + ) - ~ j l [ ~ k ( + )  - P ~ I I  
cijki = E{[s i (+ )  - ~ i l I z j ( d )  - /1 j l [z~(4)  - ~tlI.i(d) - P,I} - 3cijcki. 

The probability distribution P ( A @ )  of the deviation A@ of the estimate from 
the true parameter value is given by . 

P(Aal )  = / n d S i P ( S , ) 6 [ A d X k  + & P ~ ) ]  

where 6 ( r )  is the Dirac delta function which may be thought of as a shorthand for 
any Jacobian factors needed, and the distribution P ( S i )  of the variable Si is given 
asymptotically by thc Fourier transform of expression (Al). (Note the proportionality 
sign which is a reminder of the need to normalize the resulting distribution.) ?he 
goal of this section is to obtain an asymptotic expansion for this probability for a 
large number n of sample points. An asymptotic expansion of this expression as it 
stands would be very diliicult, if for no other reason than the difficulty of obtaining 
( c - ~ ) ~ ~ ,  so first P(A(11) is rewritten using the Fourier integral theorem. This gives 

P(A@) a /Fn ( d S . 3 )  exp(ilijXj)X,(lC,)exp[ikAI(X, + f i p l ) ]  
-lr ' 3 n ,  

I -  

= J d k ~ d l i , e x p ( i C J i i A , ~ ~ ) E ( $ . . l ~  2rr + A'j),y,,(Iir,) 
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By using (Al), the asymptotic expansion up to o(l/n) of P(A@) is 

i k3A, Aj A kc;, k 

6 6  
P(A@) a j g e x p ( i k f i A q p q ) e x p  1 - 

3 k 4 A i A j A k A l c i j k l  - k b ( A ; A j A k ~ ; j r ) 2  
7211 + +o(&>] 

It is still necessary to expand the exponentials in powers of 1/fi. It is useful to 
define a change of variables by B ( A i A j c i j ) - I l 2 ,  and y E f i B A , p i ,  which 
yields 

where the Hermite polynomials H , ( y )  are given by 

A n r m n t  r:mnl:firQt:nn n n  nnw be - 6 . " '  U"..f.,L.,Y.L'U.. W.. ..Y.1 by figtifig that !hp ~rnz..rtnrinn -"I--'"+'-" 2 
derivative of the likelihood function jS zero; this implies that p, = 0. Using this 
result, the asymptotic form of P(A@) can be obtained as an expansion in powers of 
l / f i  about Fisher's Gaussian result, which has the form 

?he expectations of (J;;A(Djm will be of 0(1), as can be verified by integrating 
them over the Po in (2.3). Thus, for the purposes of expanding about Fisher's result, 
A@ will be of O(l/&). %king this into account allows an expansion of the various 
terms making up (2.2) 
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The final terms of (2.2) come from the explicit corrections to the Gaussian form 
of the central limit theorem. Again, since A@ O ( l / f i ) ,  some of the terms in 
(2.2) of o(ACP*) with factors of fi in the denominator, are actually negligible to 
O(l/n).  Keeping only terms that are genuinely O( l /n )  gives 

2 1 1 2  

+ H ,  [ (2) A@] $} + 0 (A) (2.7) 

where the arguments of the Hermite polynomials are shown explicitly. 
So, equation (2.2), with (2.4) and (2.5) substituted into the prefactors and (2.6) 

and (2.7) in the square brackets, give the asymptotic expansion of P(ACP), that is, the 
asymptotic solution to the likelihood equation including first corrections for a finite 
sample. The o(l/n) corrections to P ( A @ )  correspond to keeping terms up to cubic 
order in A@ in the expansion (2.1). The statistical approach used here includes both 
the correlations between terms in the expansion of the likelihood equation, and the 
corrections to the central limit theorem. 

3. lkanslation families 

In this section explicit conditions for the failure of the Gaussian likelihood approxima- 
tion are obtained for thc case of estimation of parameters of the so-called translation 
family. That is, the probability density takes the form p ( 4  1 @) = f (4  - @). It is 
further assumed that this density satisfies the ‘sensible’ boundary conditions 

for any sufficiently ‘sensible’ function y(p‘, p”> p”’, p”“)  which includes only up to 
the fourth derivatives of p (  4 I (U) (recall that primes on p denote differentiation with 
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respect to 4). In this case the expectations of the derivatives of the log-likelihood 
function can be simplified by integration by parts: 

E [ L ~ ( ~ ) ]  5 112 = - 

(recall that Z B the Fisher information). The higher-order moments a n  also be 
simplified: 

Substituting these simplified expressions for translation families into (2.2) to (2.7) 
gives corrections to P ( A 9 ) .  For a completely general distribution of the translation 
family the expression is lengthy and therefore not written here. Only the expectations 
of the error and the square error are given here as 

and 

Recall that (2.2) has a proportionality sign so that for calculating the above moments, 
a normalization constant is needed. This normalization for P ( A @ )  is given by 
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The moments clll, cl12 and cll!l which arise from corrections to the central limit 
theorem do not appear erplicif& in the above expressions because Cor the translation 
family equations (3.1) give them in terms of c2?, p, and p4. Nevertheless, the 
central limit theorem corrections have iniplicif& affected the O( l / n )  results, and 
were therefore an essential part of the expansion procedure. Different o ( l / n )  
corrections would have been erroneously obtained if the corrections to the central 
limit theorem were not included in the solution of the likelihood equation. 

A case of special interest is when the maximum likelihood estimator is unbiased, 
that is, when p, = 0. In this case E(A@) = 0, 

var(A@) = L{ nZ 1 + :[$ /dQ($ - +$) - 11 + 0 (&)} (3.2) 

and by making the change of variable to Y = (nZ)1/2A9, the normalized probability 
distribution becomes 

P ( Y )  = ( 2 r r ) ” Z e x p ( - Y ? / 2 )  + 2YZ - 5 )  

1 P4 + - 6 Y 2 + 3 )  + 0 24 111- 
(3.3) 

It is easy to turn this result into a condition for the failure of Fisher’s asymptotic 
result. If 

where nYal is given by 

then the O ( l / n 2 )  corrections to the variance vsr (A9)  differ from Fisher’s asymp- 
totic result of l / (nZ)  by more than e%. 

The second condition derived Cor the .failure of fisher’s asymptotic result Cor the 
unbiased maximum likelihood estimator requires that the kurtosis 

of P ( A 9 )  be non-negligible. (Recall that K = 0 for a Gaussian distribution.) In 
particular, if 

100% 
n < nkur- f% 

where 
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then the first corrections to the kurtosis of P ( A @ )  will be more than f% of the 
square of its variance. 

A nice feature of these conditions is that they did not require any assumptions 
beyond an unbiased translation family distribution. The use of these conditions will 
now be illustrated for two classes of distributions in the unbiased translation family. 

These two classes were chosen with very different characteristics. The first is 
a power of a Gaussian distribution, which has a flat peak, is box-like, and has an 
insignificant tail. Their probability densities are given by 

with m a positive integer. For RI = 1 this reduces to a Gaussian. As m increases 
the distribution becomes more box-like. 

In contrast, the second class of distributions have thin peak,  and broad tails. 
Their probability densities are given by 

over the interval 4 E [ - x ,  x ) ,  with A4 a positive integer. For M = 1, this reduces 
to a uniform distribution which is of no interest for maximum likelihood estimation. 
However, as M increases the distribution develops a sharp peak (approximated by a 
logarithmic divergence) and keeps its wide tail. 

Xbles 1 and 2 show the type of predictions that can be easily generated for many 
distributions, and that could prove useful in the design of experiments. These tables 
show, for various members of the classes (3.4) and (3 .9,  the number of data points 
nmr and nkur which [to O ( l / n )  in P ( A @ ) ]  correspond, respectively, to a 100% 
deviation from Fisher's variance, and to a kurtosis which is 100% of the square of 
the variance of the estimate. 

Table 1. &ample of the type of lablc Ibat can be generaled from Ihe 113suIIs in this paper 
to be used in the design of experiments. Far lhe class of distributions (3.4), 5n,.. and 
Sq., estimate llie number of data points at which the Gaussian appmximation breaks 
down (corespanding to an error of 20% for e% and f% respectively). The distribution 
is Gaussian for m = I; increasing m makes it more 'boxy'. 

1 0.0 0.0 
2 2.311 2.106 
3 5.143 5.517 
4 9.378 9.191 
5 13.14 12.98 
IO 32.61 32.52 

As a trivial example, in table 1, m = 1 corresponds to a Gaussian distribution. 
For any non-zero choices of the confidence parameters e and f, both of the above 
conditions require that 11 < 0, but this is in exact agreement with an analytic calcu- 
lation of the maximum likelihood behaviour, since this distribution has a Gaussian 

c 
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Tsbk 1 b m p i e  of the Iype of table that can be generated from the mulb in this 
paper to be used in the design of experiments. For the class of distribulions (3.5). Sn.,., 
and Sakur estimate the number of data p ints  at which the Gaussian approximation 
breaks down (corresponding to an error of 20% for e% and f% respectively). n e  
distribution has a long tail and a peak that logarithmically diverges as M increases. 

M Rvdir nkut 

i 4.814 9.54 
4 6.065 12.36 

12 11.79 23.68 
33 26.19 52.15 
50 37.41 14.36 
14 52.92 105.1 

likelihood function for all sample sizes, with a variance identical to that predicted by 
Fisher's asymptotic results. 

As a less trivial example, consider p y )  which is tabulated as m = 4 in table 1. 
Both n,,, and nkur are only a little larger than nine data points. Thus, if one wanted 
to perform an experiment which would be analysed assuming an approximately Gaus- 
sian likelihood function with the confidence parameters e% and f% approximately 
5%, then one would need to sample around 180 to 190 data points. Further, it would 
be inappropriate to analyse smaller samples than this using techniques which assumed 
an approximately Gaussian likelihood function. 

As a final example, table 2 predicts that nkur - 1M) for the distribution corre- 
sponding to the one shown in figure 1. Choosing the kurtosis confidence parameter 
f %  as 10% leads to the prediction that one should not assume that the likelihood 
function is sufficiently close to being Gaussian when the sample size is less than, say, 
loo0 data points! 

4. Numerical simulations 

ittc IC~UIW UL SCCLIUII 3 arc quiic W I I V ~ I I I ~ I I L  IUI itit: ot:xgr~ UI cxp,c~nrr~;lru VCL.~,UJ= 

they are simple and applicable to many distributions. Nevertheless, the user might 
want some evidence of their validity. For this purpose, some comparison with numer- 
ical simulation is presented in this section. 

Expression (3.3) gives the O( 1/11) correction to Fisher's asymptotic Gaussian 
result since thesc distributions are members of the unbiased translation family. For 
mmn..r:.,... nCt..llt r+..r:rt:rr F-. D I  A a>\ c I I ~ c , , ~ . , , p ~  ...:mm wnnnfP r2dn ciml~- 
CY."p.O"", L l l L  a C L " " ,  O L a L I a L I U  ,"I 1 ,U', nr,r C",, ."lYLI" ".,,U6 IVIYL.... W.." "I...- 

lation. This involves making repeated simulations of an 'experiment' in order to build 
up the distribution of the estimator. Each 'experiment' consists of selecting n poinu 
independently from a distribution, calculating the likelihood function, and finding the 
location of the absolute maximum. Since the translation family distributions depend 
only on the difference between the random variable q5 and the actual parameter @,I 
!hce for !he purposes of s i ~ u ! a t k x  the. actua! p m ~ e t e r  d m  may be chosen as 
zero, i.e. Q 0  = 0. The details of the computer algorithm and errors analysis are 
discussed in some detail elsewhere [GI. 

Tables 3 and 4 compare the results of section 3 with numerical simulations for 
the choices m = 4, and M = 12 in the distributions (3.4) and (3.5) rCSpeCtiVeb'. 
These tables show thc predicted deviation (based on (3.3) for P ( A @ ) )  from Fisher's 

-- .-- ̂r ^^^. L -  1 ... :*- :--* _ _  A-":"., ^C ---.- 
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asymptotic prediction of I / ( n Z )  next to the actual percentage deviation as calculated 
by Monte Carlo simulation. For both cases nyar - 10 data points. For samples 
consisting of only 10 data points the predicted and actual deviations qualitatively 
agree, in that they both say there are large deviations from Fisher's results. However, 
they do not agree quantitatively. The quantitative agreement becomes better as 
successively larger sample sizes are studied. For these two cases, the tabulated results 
show that when the number of data points is large enough that e% - 20%, then 
there is even good quantitative agreement between the predicted and actual per Cent 
deviations from Fisher's result. Thus, the conditions of the previous section are 
validated. 

a b l e  3. The predicted percentage deviation of the variance in the estimate mmpared to 
the actual percentage deviation t o m  Fisheh result loor distribution (3.4) when m = 4. 
(The unccrtaintics represent one standard error for the variance.) 

Number of Predicled percentage Actual percentage 
&la points deviation from Fisher's result deviation from Fisher's result 

10 93.8% 59.5% i 2.1% 
20 46.9% 22.3% i l.h% 
30 31.3% 20.5% f 3.0% 
40 23.4% 15.8% f 4.0% 
60 15.6% 21.2%* 10.1% 

Tnblc 4. The predicted percentage dciialion of the variance in the estimate mmpared to 
the aclual peruentage dwialion from Fisher's result for distribution (3.5) when M = 12. 
(The uncrrlilinties represen1 one standard error for the variance.) 

Number of Predicted percentage Actual percenrage 
&la points deviation from Fisher's repull deviation from Fisher's mull  

IO 117.9% 644.2% i 28.9% 
20 59.0% 132.7% f 18.7% 
30 39.3% 57.5% i 4.6% 
40 29.5% M.5% i 25% 
60 19.7% 17.2% i 23% 

Why is there only poor quantitative agreement between the predicted and actual 
deviations for a smallcr number of data points:' It is because the predicted deviations 
are based only on the lirst corrections to the solution to the likelihood equation. 
Thus, the corrections to P(A(D) should nor be used as a better approximation to 
the behaviour of the distribution of the estimate. The problem with doing this 
is illustrated in figures 2 and figure 3. In figure 2 the O ( l / n 2 )  correction for 
the estimate variance is shown by the dotted curve, and it overestimates the actual 
values (except for samples with 60 data points), whereas in figure 3 this correction 
underestimates the actual values (except for samples with a single data point or with 
60 data points). These corrections do not predict well the small sample-size behaviour. 
In both cases, howcvcr, the Fisher prediction given by the broken curves is always 
an underestimate of the estimate vdriance, a consequence of the Cramer-Rao lower 
bound. 



Figure 2 l h e  variance var(A@) of the estimate A". for distribution (3.4) (shown in 
the insct) with m = 4, as computed by Monte Carlo simulations, as a function of n. 
the number of data points (full cuwe). For comparison, the broken cuwe represents 
the asymplmic Fisher resuI1 of I / (nT) ,  and the dotted a w e  represents the corrected 
variancc given by rxpre'ssion (3.2). Fisher's result is an underestimate of the estimate 
variance, and the predicted correction lrom this paper gives an overestimate (except tor 
wmplcs wit l i  03 data p in&) .  

Figure 3. lhe variance var (A@) of the estimale A@, tor distribution (3.5) (shown in 
the inset) with A4 = 12, as compuled by Monte Carlo simulations as a function of n. 
the number of dala points (full cuwvr). For companson. the broken cuwe represents 
the asymptotic Fisher result of l/(C7), and the dotted cuwe represents the mrrected 
variance given by (3.2). Fisher's resull i, an underestimate of the estimate variance, and 
the predicted correction lrom this paper also gives an underestimate (except for samples 
with a single data paint or with 60 data paints). 
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5. Concluding remarks 

The main result of this paper is a technique for obtaining explicit conditions for 
the failure of the Gaussian approximation to the likelihood function. While in this 
paper such conditions were actually only derived for the unbiased maximum likelihood 
estimation of single-parameter distributions in the translation family, enough details 
have been given in the derivation, so that conditions for more genera! classes of 
distributions, including multiparameter and multivariate distributions, may be derived. 

These results are useful for the design of experiments if one is interested in 
applying simple methods of data analysis in maximum-likelihood estimation. These 
simplified methods are widely used, but their wlidity is seldom checked. The proce- 
dure given here can help assure that the error bar for a parameter estimate is not 
significantly - undereslintaled. 

Finally, the results presented here give the elficiency of maximum-likelihood esti- 
mation inside the asymptotic regime and also when this regime is reached. There has 
been a growing interest in the physics community in the design of 'optimally' efficient 
experiments. As these designs usually assume maximum-likelihood estimation is to 
be used as the method of data analysis, there is a role for the results of this paper in 
this endeavor. 
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Appendix. Central limit theorem corrections 

This appendix describes corrections to the multivariate central limit theorem for 

in terms of the characteristic function. Consider the multivariate distribution p ( z i ) .  
The goal is to obtain an approximation, for large n, of the distribution of the variable 

indepefi&nt!y sp!ec!~d ide.fi!ica_! samp!c.r !3!. It wi!! be sufi-cien? (0 give t_h.e. c ~ r r e r ~ i o n ~  

with p i  the mean of xi  over p ( x i ) ,  and (z i i j  the ith component of the j th  piece of 
data. The characteristic function x,,( I C i )  for this distribution is then given by 

i li, li, IC, c,, , = exp(-It.,,,I<,,c,,," 
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where x , ( k j )  is the characteristic function for p ( i i ) ,  and defining A i i  = 2i - 
the multivariate moments are given by 

c i j  E E ( A i i A i j )  

cijk E(Az iAzjAzk)  (4 
~ r j k !  z E ( A z ; A + ~ A z , A z ! )  - 3 c ; j c , ! .  
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